Publicatie
Publication date
Climatic factors and long-term trends of influenza-like illness rates in The Netherlands, 1970–2016.
Caini, S., Spreeuwenberg, P., Donker, G., Korevaar, J., Paget, J. Climatic factors and long-term trends of influenza-like illness rates in The Netherlands, 1970–2016. Environmental Research: 2018, 167, p. 307-313.
Download the PDF
Background
Climatic factors affect the survival and transmissibility of respiratory viruses causing influenza-like illness (ILI), and we hypothesized that changes in absolute humidity and temperature may affect long-term trends of ILI incidence rate in temperate countries. We tested this hypothesis using ILI and meteorological time series in the Netherlands for the period 1970-2016.
Methods
We described the long-term trends of ILI incidence, absolute humidity and temperature; modelled the association between climatic factors and ILI activity using negative binomial regression models; and assessed the strength of the association between the seasonal average absolute humidity (or temperature) and ILI incidence rate using the Spearman's rank correlation coefficient.
Results
The ILI incidence rate declined from 1970 and reached a minimum in the season 2002-03, but started to increase again from the season 2003-04 onwards. In the negative binominal regression models, the weekly ILI count was inversely associated (p < 0.001) with 0- and 1-week lagged absolute humidity and temperature. After three decades of rising absolute humidity and temperature (1970-2000), the early 2000s represented a trend-reversal point for the climatic time series. The seasonal average ILI incidence rate and absolute humidity (or temperature) were strongly (inversely) correlated.
Conclusions
Our findings suggest that climate change may have played a role in the long-term trends of ILI incidence rates in the Netherlands, as we were able to show that lower humidity and temperature in a given week were associated with higher ILI incidence in the next week, there was a clear time point reversal in climatic parameters and ILI rates in the 2000s, and the average annual ILI incidence was inversely related to average annual temperatures and humidity. (aut. ref.)
Climatic factors affect the survival and transmissibility of respiratory viruses causing influenza-like illness (ILI), and we hypothesized that changes in absolute humidity and temperature may affect long-term trends of ILI incidence rate in temperate countries. We tested this hypothesis using ILI and meteorological time series in the Netherlands for the period 1970-2016.
Methods
We described the long-term trends of ILI incidence, absolute humidity and temperature; modelled the association between climatic factors and ILI activity using negative binomial regression models; and assessed the strength of the association between the seasonal average absolute humidity (or temperature) and ILI incidence rate using the Spearman's rank correlation coefficient.
Results
The ILI incidence rate declined from 1970 and reached a minimum in the season 2002-03, but started to increase again from the season 2003-04 onwards. In the negative binominal regression models, the weekly ILI count was inversely associated (p < 0.001) with 0- and 1-week lagged absolute humidity and temperature. After three decades of rising absolute humidity and temperature (1970-2000), the early 2000s represented a trend-reversal point for the climatic time series. The seasonal average ILI incidence rate and absolute humidity (or temperature) were strongly (inversely) correlated.
Conclusions
Our findings suggest that climate change may have played a role in the long-term trends of ILI incidence rates in the Netherlands, as we were able to show that lower humidity and temperature in a given week were associated with higher ILI incidence in the next week, there was a clear time point reversal in climatic parameters and ILI rates in the 2000s, and the average annual ILI incidence was inversely related to average annual temperatures and humidity. (aut. ref.)
Background
Climatic factors affect the survival and transmissibility of respiratory viruses causing influenza-like illness (ILI), and we hypothesized that changes in absolute humidity and temperature may affect long-term trends of ILI incidence rate in temperate countries. We tested this hypothesis using ILI and meteorological time series in the Netherlands for the period 1970-2016.
Methods
We described the long-term trends of ILI incidence, absolute humidity and temperature; modelled the association between climatic factors and ILI activity using negative binomial regression models; and assessed the strength of the association between the seasonal average absolute humidity (or temperature) and ILI incidence rate using the Spearman's rank correlation coefficient.
Results
The ILI incidence rate declined from 1970 and reached a minimum in the season 2002-03, but started to increase again from the season 2003-04 onwards. In the negative binominal regression models, the weekly ILI count was inversely associated (p < 0.001) with 0- and 1-week lagged absolute humidity and temperature. After three decades of rising absolute humidity and temperature (1970-2000), the early 2000s represented a trend-reversal point for the climatic time series. The seasonal average ILI incidence rate and absolute humidity (or temperature) were strongly (inversely) correlated.
Conclusions
Our findings suggest that climate change may have played a role in the long-term trends of ILI incidence rates in the Netherlands, as we were able to show that lower humidity and temperature in a given week were associated with higher ILI incidence in the next week, there was a clear time point reversal in climatic parameters and ILI rates in the 2000s, and the average annual ILI incidence was inversely related to average annual temperatures and humidity. (aut. ref.)
Climatic factors affect the survival and transmissibility of respiratory viruses causing influenza-like illness (ILI), and we hypothesized that changes in absolute humidity and temperature may affect long-term trends of ILI incidence rate in temperate countries. We tested this hypothesis using ILI and meteorological time series in the Netherlands for the period 1970-2016.
Methods
We described the long-term trends of ILI incidence, absolute humidity and temperature; modelled the association between climatic factors and ILI activity using negative binomial regression models; and assessed the strength of the association between the seasonal average absolute humidity (or temperature) and ILI incidence rate using the Spearman's rank correlation coefficient.
Results
The ILI incidence rate declined from 1970 and reached a minimum in the season 2002-03, but started to increase again from the season 2003-04 onwards. In the negative binominal regression models, the weekly ILI count was inversely associated (p < 0.001) with 0- and 1-week lagged absolute humidity and temperature. After three decades of rising absolute humidity and temperature (1970-2000), the early 2000s represented a trend-reversal point for the climatic time series. The seasonal average ILI incidence rate and absolute humidity (or temperature) were strongly (inversely) correlated.
Conclusions
Our findings suggest that climate change may have played a role in the long-term trends of ILI incidence rates in the Netherlands, as we were able to show that lower humidity and temperature in a given week were associated with higher ILI incidence in the next week, there was a clear time point reversal in climatic parameters and ILI rates in the 2000s, and the average annual ILI incidence was inversely related to average annual temperatures and humidity. (aut. ref.)